1/x^2-3=8/x

Simple and best practice solution for 1/x^2-3=8/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/x^2-3=8/x equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

1/(x^2)-3 = 8/x // - 8/x

1/(x^2)-(8/x)-3 = 0

1/(x^2)-8*x^-1-3 = 0

x^-2-8*x^-1-3 = 0

t_1 = x^-1

1*t_1^2-8*t_1^1-3 = 0

t_1^2-8*t_1-3 = 0

DELTA = (-8)^2-(-3*1*4)

DELTA = 76

DELTA > 0

t_1 = (76^(1/2)+8)/(1*2) or t_1 = (8-76^(1/2))/(1*2)

t_1 = (2*19^(1/2)+8)/2 or t_1 = (8-2*19^(1/2))/2

t_1 = (8-2*19^(1/2))/2

x^-1-((8-2*19^(1/2))/2) = 0

1*x^-1 = (8-2*19^(1/2))/2 // : 1

x^-1 = (8-2*19^(1/2))/2

-1 < 0

1/(x^1) = (8-2*19^(1/2))/2 // * x^1

1 = ((8-2*19^(1/2))/2)*x^1 // : (8-2*19^(1/2))/2

2*(8-2*19^(1/2))^-1 = x^1

x = 2*(8-2*19^(1/2))^-1

t_1 = (2*19^(1/2)+8)/2

x^-1-((2*19^(1/2)+8)/2) = 0

1*x^-1 = (2*19^(1/2)+8)/2 // : 1

x^-1 = (2*19^(1/2)+8)/2

-1 < 0

1/(x^1) = (2*19^(1/2)+8)/2 // * x^1

1 = ((2*19^(1/2)+8)/2)*x^1 // : (2*19^(1/2)+8)/2

2*(2*19^(1/2)+8)^-1 = x^1

x = 2*(2*19^(1/2)+8)^-1

x in { 2*(8-2*19^(1/2))^-1, 2*(2*19^(1/2)+8)^-1 }

See similar equations:

| 10x=4(x+4.5) | | m+51=12 | | 8(2w-6)+4(-1-5w)= | | -c=6 | | 12x-17=6x+18 | | -11+t=14 | | -7(6-2x)=112 | | -1=7w-5 | | -5.4-7.8x=131.382 | | -3(t+5)+(4t+2)=18 | | 16m=176 | | D=nfort | | 7x=3(-8+x) | | 7(x-4)=-2x+44 | | x*y=y+6x+4 | | 7x/3=6 | | 3x+6+2x+14=180 | | 48/-6m | | X/11=-12 | | 4x+3=8x-13 | | -x^2+13x-4=0 | | x/5+2=4 | | 3-2x=x-5 | | 20=7-10/5x | | x/5+4=2 | | 1/2(4n+6)=5 | | x/4+5=2 | | 4b=72 | | x/2+5=4 | | 7n+18=-17 | | -34=-8b+16+-6b | | n+6(n-3)=-18+7n |

Equations solver categories